Research

The research interests of nano-bio lab lie at the interface of physics, biology, and nanoscience. This lab aims to seamlessly integrate the principles of condensed matter physics, optical spectroscopy, and physiological chemistry to elucidate biophysics at the nanoscale.

Untitled

Currently, the research emphasis is in three areas:

Elucidation of Nano-biointeractions: While nanoscience and nanotechnology can revolutionize many fields, their impact on health and environment is yet to be comprehensively understood. Indeed, nanomaterials present a wide variety of physicochemical characteristics and strongly interact with biomolecules. We are exploring the influence of nanomaterial characteristics (particularly defects) and charge transfer, on the formation of protein corona and the ensuing bioresponses. Materials of interest include carbon nanostructures (nanotubes, fullerenes, and graphene), metal, and metal oxide nanoparticles.

Biomedical imaging: Defects in nanomaterials provide new physical properties that are otherwise absent in the bulk. For instance, defects such as O vacancies in ZnO nanoparticles result in surface states that cause photoluminescence. Our aim is to engineer such defects in emerging materials to realize the possibility of multi-photon imaging.

Nano-biosensing: Emerging two-dimensional materials (which are entirely surfaces) are excellent platforms to sense bioanalytes. In this regard, we aim to functionalize these surfaces with capture antibodies and use these robust platfroms for electrochemical and optical sensing of biomarkers in diseases such as HIV, Ebola etc. Furthermore, we are endeavoring to develop smart-phone based flexible optical sensors that can efficiently detect pathogens and identify disease markers in point-of-care and resource-limited settings.

********

“I have no special talents. I am only passionately curious”- Albert Einstein

Following Albert’s advice, we try, explore, poke, question, and turn things inside out without adhering to the invisible boundaries of sub-fields that otherwise confine one’s curiosity. In addition to the above topics, we find these also curious

Nanomaterials for energy storage: We are interested in controlling defects in nanomaterials to enable new paradigms of energy storage in terms of increasing quantum capacitance in supercapacitors or enhancing power density in batteries.

Defects at the nanoscale: We explore how defects at the nanoscale behave from both theoretical and experimental standpoints with the goal of manipulating defects to bring forth new properties.

Advertisements